Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37511603

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Edinger-Westphal Nucleus , Parkinson Disease , Animals , Rats , Basal Ganglia/metabolism , Dopamine/metabolism , Down-Regulation , Edinger-Westphal Nucleus/metabolism , Levodopa/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rotenone/metabolism , Substantia Nigra/metabolism
2.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36233039

Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.


Fluoxetine , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Depression/drug therapy , Depression/genetics , Epigenesis, Genetic , Fluoxetine/pharmacology , Hippocampus , Histones/genetics , Lysine/genetics , Male , Mice , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Prefrontal Cortex , Reproducibility of Results
3.
Front Endocrinol (Lausanne) ; 13: 995900, 2022.
Article En | MEDLINE | ID: mdl-36213293

According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.


Depression , Fluoxetine , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Male , Mice , Calcium Carbonate , Corticotropin-Releasing Hormone/metabolism , Depression/drug therapy , Depression/genetics , Disease Models, Animal , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Histones , Mixed Function Oxygenases , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/genetics , Tyrosine , Urocortins/metabolism
4.
Front Aging Neurosci ; 14: 862098, 2022.
Article En | MEDLINE | ID: mdl-35592695

FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.

5.
J Neuroinflammation ; 19(1): 31, 2022 Feb 02.
Article En | MEDLINE | ID: mdl-35109869

BACKGROUND: The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS: Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS: In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS: Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.


Edinger-Westphal Nucleus , Parkinson Disease , Animals , Anxiety , Humans , Neurons/physiology , Rats , Urocortins/genetics
6.
Am J Physiol Endocrinol Metab ; 322(1): E10-E23, 2022 01 01.
Article En | MEDLINE | ID: mdl-34779255

Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.


Body Temperature/drug effects , Cholecystokinin/administration & dosage , Cyclooxygenase 2/metabolism , Hyperthermia/chemically induced , Hyperthermia/metabolism , Signal Transduction/drug effects , Animals , Anorexia/chemically induced , Benzodiazepines/administration & dosage , Body Temperature Regulation/drug effects , Cholecystokinin/adverse effects , Cyclooxygenase 2 Inhibitors/administration & dosage , Disease Models, Animal , Eating/drug effects , Fever/chemically induced , Fever/drug therapy , Hypothalamus/drug effects , Hypothalamus/metabolism , Injections, Intraventricular , Lipopolysaccharides/adverse effects , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptor, Cholecystokinin B/antagonists & inhibitors , Treatment Outcome
7.
Neuropharmacology ; 205: 108898, 2022 03 01.
Article En | MEDLINE | ID: mdl-34861283

The centrally-projecting Edinger-Westphal nucleus (EWcp) hosts a large population of neurons expressing urocortin 1 (Ucn1) and about half of these neurons also express the leptin receptor (LepRb). Previously, we have shown that the peripheral adiposity hormone leptin signaling energy surfeit modulates EWcp neurons' activity. Here, we hypothesized that Ucn1/LepRb neurons in the EWcp would act as a crucial neuronal node in the brain-white adipose tissue (WAT) axis modulating efferent sympathetic outflow to the WAT. We showed that leptin bound to neurons of the EWcp stimulated STAT3 phosphorylation, and increased Ucn1-production in a time-dependent manner. Besides, retrograde transneuronal tract-tracing using pseudorabies virus (PRV) identified EWcp Ucn1 neurons connected to WAT. Interestingly, reducing EWcp Ucn1 contents by ablating EWcp LepRb-positive neurons with leptin-saporin, did not affect food intake and body weight gain, but substantially (+26%) increased WAT weight accompanied by a higher plasma leptin level and changed plasma lipid profile. We also found that ablation of EWcp Ucn1/LepRb neurons resulted in lower respiratory quotient and oxygen consumption one week after surgery, but was comparable to sham values after 3 and 5 weeks of surgery. Taken together, we report that EWcp/LepRb/Ucn1 neurons not only respond to leptin signaling but also control WAT size and fat metabolism without altering food intake. These data suggest the existence of a EWcp-WAT circuitry allowing an organism to recruit fuels without being able to eat in situations such as the fight-or-flight response.


Adipose Tissue, White/metabolism , Edinger-Westphal Nucleus/metabolism , Leptin/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Sympathetic Nervous System/metabolism , Urocortins/metabolism , Animals , Herpesvirus 1, Suid , Male , Rats
8.
Front Aging Neurosci ; 11: 274, 2019.
Article En | MEDLINE | ID: mdl-31649527

Corticotropin-releasing factor (CRF) immunoreactive (ir) neurons of the paraventricular nucleus of the hypothalamus (PVN) play pivotal role in the coordination of stress response. CRF-producing cells in the central nucleus of amygdala (CeA) and oval division of the bed nucleus of stria terminalis (BNSTov) are also involved in stress adaptation and mood control. Immediate early gene products, subunits of the transcription factor activator protein 1 (AP1) are commonly used as acute (FOS) and/or chronic (FOSB/deltaFOSB) markers for the neuronal activity in stress research. It is well known that the course of aging affects stress adaptation, but little is known about the aging-related stress sensitivity of CRF neurons. To the best of our knowledge, the stress-induced neuronal activity of CRF neurons in the course of aging in acute and chronic stress models was not studied systematically yet. Therefore, the aim of the present study was to quantify the acute restraint stress (ARS) and chronic variable mild stress (CVMS) evoked neuronal activity in CRF cells of the PVN, CeA, and BNSTov using triple-label immunofluorescence throughout the whole lifespan in the rat. We hypothesized that the FOS and FOSB content of CRF cells upon ARS or CVMS decreases with age. Our results showed that the FOS and FOSB response to ARS declined with age in the PVN-CRF cells. BNSTov and CeA CRF cells did not show remarkable stress-induced elevation of these markers neither in ARS, nor in CVMS. Exposure to CVMS resulted in an age-independent significant increase of FOSB/delta FOSB immunosignal in PVN-CRF neurons. Unexpectedly, we detected a remarkable stress-independent FOSB/deltaFOSB signal in CeA- and BNSTov-CRF cells that declined with the course of aging. In summary, PVN-CRF cells show decreasing acute stress sensitivity (i.e., FOS and FOSB immunoreactivity) with the course of aging, while their (FOSB/deltaFOSB) responsivity to chronic challenge is maintained till senescence. Stress exposure does not affect the occurrence of the examined Fos gene products in CeA- and BNSTov-CRF cells remarkably suggesting that their contribution to stress adaptation response does not require AP1-controlled transcriptional changes.

9.
BMC Geriatr ; 18(1): 107, 2018 05 08.
Article En | MEDLINE | ID: mdl-29739343

BACKGROUND: Aging sarcopenia characterized by low muscle mass with low muscle strength affects men and women differently. The contribution of interleukin-6 (IL-6) to sarcopenia has been suggested based on a negative correlation between plasma IL-6 and muscle function described by some studies. However, no consensus regarding clinically relevant cut-off criteria has been reached. Another question arises whether pooling male and female data is an accurate way to determine the predictive value of IL-6 in sarcopenia. The present meta-analysis was designed to assess: (1) whether plasma IL-6 in aged populations in fact correlates negatively to muscle strength; (2) whether such a correlation exists both in men and in women; and (3) whether plasma IL-6 shows a gender difference in old age. METHODS: We applied the preferred reporting items for systematic review and meta-analysis protocols (PRISMA). We searched PubMed and Embase for papers that reported data on individuals over 65 without inflammatory diseases. We extracted either separate male and female data on plasma IL-6 along with at least one muscle parameter or correlation coefficient between plasma IL-6 and these parameters. Random effect models calculated with DerSimonian and Laird weighting methods were applied to analyze correlation coefficients and gender difference in plasma IL-6. Egger's test was used to assess the small study effect. RESULTS: Twenty articles out of 468 records identified were suitable for analyses. Plasma IL-6 correlates negatively with grip strength in mixed populations and also separately in men [- 0.25 with 95% confidence interval (CI): - 0.48, - 0.02] and in women (- 0.14 with 95% CI: - 0.24, - 0.03). However, contrary to expectations, men with better muscle condition have higher plasma IL-6 than women of similar age with worse muscle condition (plasma IL-6 male-female difference: 0.25 pg/mL with 95% CI: 0.15, 0.35). CONCLUSION: This is the first study to demonstrate that a higher predictive IL-6 cut-off level should be determined for aging sarcopenia in men than in women.


Hand Strength , Interleukin-6/blood , Sarcopenia/blood , Sarcopenia/diagnosis , Aged , Female , Humans , Male , Middle Aged , Sarcopenia/physiopathology , Sex Factors
10.
J Appl Physiol (1985) ; 124(2): 268-275, 2018 02 01.
Article En | MEDLINE | ID: mdl-28729394

Obesity presents a growing public health problem. Therefore the analysis of body composition is important in clinical practice as well as in animal research models of obesity; hence precise methods for the assessment of body fat would be essential. We aimed to evaluate in vivo abdominal microcomputed tomography scan restricted to the L1-L3 region [micro-CT(L1-L3)], a skinfold thickness-based method (STM), and postmortem body composition analysis (PMA) with regard to whole body micro-CT scan in rats. Male Wistar rats of different age groups (from 3 to 24 mo) and nutritional states (normally fed, high-fat diet-induced obese, and calorie-restricted) were used. The fat percentage was determined with micro-CT(L1-L3) and whole body scan in anesthetized rats. Their skinfold thickness was measured in five locations with a Lange caliper. Wet weights of epididymal and retroperitoneal fat pads were determined via PMA. With regard to fat mass, the strongest correlation was observed between abdominal and whole body micro-CT. The other methods showed weaker associations with whole body micro-CT and with each other. Micro-CT(L1-L3) and PMA showed similar age-associated increase in fat mass between 3 and 18 mo. Micro-CT(L1-L3), STM, and PMA were efficient to detect differences in fat mass values in groups of different nutritional states. Micro-CT(L1-L3) appears to be a useful method for body fat assessment in rats with reduced scanning time. In rats, STM may also be a useful, low priced, noninvasive, and simple in vivo technique to assess obesity. NEW & NOTEWORTHY Body fat of rats assessed by in vivo abdominal microcomputed tomography of the L1-L3 region strongly correlates with values determined by whole body scan. Therefore, it is a useful method for fat assessment with reduced scanning time. Skinfold thickness measurement is an in vivo technique to assess progression of obesity in rats.


Intra-Abdominal Fat/diagnostic imaging , Nutritional Status , Skinfold Thickness , Age Factors , Animals , Body Composition , Male , Rats, Wistar , X-Ray Microtomography
11.
J Gerontol A Biol Sci Med Sci ; 73(4): 438-445, 2018 03 14.
Article En | MEDLINE | ID: mdl-29099963

Appearance of middle-aged obesity and aging anorexia both in humans and rodents suggests a role for regulatory alterations. Hypothalamic melanocortin agonist, α-melanocyte-stimulating hormone (α-MSH) produced in the arcuate nucleus (ARC), reduces body weight via inducing hypermetabolism and anorexia mainly through melanocortin 4 receptors (MC4Rs) in the paraventricular nucleus (PVN). Orexigenic ARC-derived agouti-related protein (AgRP) is an inverse agonist on MC4R in the PVN. Previously, we demonstrated that characteristic age-related shifts in the catabolic effects of α-MSH may contribute both to middle-aged obesity and aging anorexia. Responsiveness to α-MSH decreases in middle-aged rats compared with young adults, whereas in old age it rises again significantly. We hypothesized corresponding age-related dynamics of endogenous melanocortins. Therefore, we quantified mRNA gene expression and peptide or protein level of α-MSH, AgRP, and MC4R in the ARC and PVN of male Wistar rats of five age groups (from young to old). Immunofluorescence and quantitative reverse transcriptase polymerase chain reaction were applied. α-MSH and MC4R immunoreactivities in the ARC and PVN declined in middle-aged and increased together with their expressions in aging rats. AgRP gene expression but not its immunoreactivity increased in aging rats. Our results demonstrate that age-dependent changes of endogenous melanocortins contribute to middle-aged obesity and aging anorexia.


Anorexia/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Melanocortins/metabolism , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , alpha-MSH/pharmacology , Age Factors , Agouti-Related Protein/metabolism , Animals , Body Weight , Calorimetry, Indirect , Eating/drug effects , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , Male , Microscopy, Confocal , Models, Animal , Oxygen Consumption , RNA, Messenger/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
12.
PLoS One ; 12(8): e0182801, 2017.
Article En | MEDLINE | ID: mdl-28809927

BACKGROUND: Leptin is one of the major adipokines in obesity that indicates the severity of fat accumulation. It is also an important etiological factor of consequent cardiometabolic and autoimmune disorders. Aging has been demonstrated to aggravate obesity and to induce leptin resistance and hyperleptinemia. Hyperleptinemia, on the other hand, may promote the development of age-related abnormalities. While major weight loss has been demonstrated to ameliorate hyperleptinemia, obese people show a poor tendency to achieve lasting success in this field. The question arises whether training intervention per se is able to reduce the level of this adipokine. OBJECTIVES: We aimed to review the literature on the effects of training intervention on peripheral leptin level in obesity during aging, in order to evaluate the independent efficacy of this method. In the studies that were included in our analysis, changes of adiponectin levels (when present) were also evaluated. DATA SOURCES: 3481 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 19 articles were suitable for analyses. STUDY ELIGIBILITY CRITERIA: Empirical research papers were eligible provided that they reported data of middle-aged or older (above 45 years of age) overweight or obese (body mass index above 25) individuals and included physical training intervention or at least fitness status of groups together with corresponding blood leptin values. STATISTICAL METHODS: We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. To assess publication bias Egger's test was applied. In case of significant publication bias, the Duval and Tweedie's trim and fill algorithm was used. RESULTS: Training intervention leads to a decrease in leptin level of middle-aged or older, overweight or obese male and female groups, even without major weight loss, indicated by unchanged serum adiponectin levels. Resistance training appears to be more efficient in reducing blood leptin level than aerobic training alone. CONCLUSIONS: Physical training, especially resistance training successfully reduces hyperleptinemia even without diet or major weight loss.


Exercise/physiology , Leptin/blood , Obesity/blood , Adult , Aged , Aging/physiology , Female , Humans , Male , Middle Aged , Resistance Training
13.
Geroscience ; 39(1): 61-72, 2017 02.
Article En | MEDLINE | ID: mdl-28299639

Hypothalamic corticotropin-releasing factor (CRF) lays downstream to catabolic melanocortins and at least partly mediates their catabolic effects. Age-related changes in the melanocortin system (weak responsiveness in middle-aged and a strong one in old rats) have been shown to contribute to middle-aged obesity and later to aging anorexia and cachexia of old age groups. We hypothesized that catabolic (anorexigenic and hypermetabolic) CRF effects vary with aging similarly to those of melanocortins. Thus, we aimed to test whether age-related variations of CRF effects may also contribute to middle-aged obesity and aging anorexia leading to weight loss of old age groups. Food intake, body weight, core temperature, heart rate, and activity were recorded in male Wistar rats of young, middle-aged, aging, and old age groups (from 3 to 24 months) during a 7-day intracerebroventricular CRF infusion (0.2 µg/µl/h) in a biotelemetric system. In addition, CRF gene expression was also assessed by quantitative RT-PCR in the paraventricular nucleus (PVN) of intact animals of the same age groups. The infusion suppressed body weight in the young, aging, and old rats, but not in middle-aged animals. Weak anorexigenic and hypermetabolic effects were detected in the young, whereas strong anorexia (without hypermetabolism) developed in the oldest age groups in which post mortem analysis showed also a reduction of retroperitoneal fat mass. CRF gene expression in the PVN increased with aging. Our results support the potential contribution of age-related changes in CRF effects to aging anorexia and cachexia. The role of the peptide in middle-aged obesity cannot be confirmed.


Aging/genetics , Anorexia/metabolism , Cachexia/metabolism , Corticotropin-Releasing Hormone/pharmacology , Energy Metabolism/drug effects , Age Factors , Aging/drug effects , Animals , Anorexia/physiopathology , Body Weight , Cachexia/physiopathology , Corticotropin-Releasing Hormone/genetics , Eating/drug effects , Humans , Infusions, Parenteral , Leptin/metabolism , Male , Models, Animal , RNA/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
14.
Neuropharmacology ; 118: 26-37, 2017 05 15.
Article En | MEDLINE | ID: mdl-28267582

The role of the urocortin 1 (Ucn1) expressing centrally projecting Edinger-Westphal (EWcp) nucleus in energy homeostasis and stress adaptation response has previously been investigated. Morphological and functional studies have proven that orexigenic and anorexigenic peptidergic afferents and receptors for endocrine messengers involved in the energy homeostasis are found in the EWcp. The central role of the hypothalamic melanocortin system in energy homeostasis is well known, however, no data have been published so far on possible crosstalk between melanocortins and EWcp-Ucn1. First, we hypothesized that members of the melanocortin system [i.e. alpha-melanocyte stimulating hormone (alpha-MSH), agouti-related peptide (AgRP), melanocortin 4 receptor (MC4R)] would be expressed in the EWcp. Second, we put forward, that alpha-MSH and AgRP contents as well as neuronal activity and Ucn1 peptide content of the EWcp would be affected by fasting. Third, we assumed that the intra-EWcp injections of exogenous MC4R agonists and antagonist would cause food intake-related and metabolic changes. Ucn1 neurons were found to carry MC4Rs, and they were contacted both by alpha-MSH and AgRP immunoreactive nerve fibers in the rat. The alpha-MSH immunosignal was reduced, while that of AgRP was increased upon starvation. These were associated with the elevation of FosB and Ucn1 expression. The intra-EWcp administration of MC4R blocker (i.e. HS024) had a similar, but enhanced effect on FosB and Ucn1. Furthermore, alpha-MSH injected into the EWcp had anorexigenic effect, increased oxygen consumption and caused peripheral vasodilation. We conclude that the melanocortin system influences the EWcp that contributes to energy-homeostasis.


Edinger-Westphal Nucleus/cytology , Homeostasis/drug effects , Neurons/drug effects , Oxygen Consumption/drug effects , Receptor, Melanocortin, Type 4 , Urocortins/metabolism , Agouti-Related Protein/metabolism , Animals , Body Temperature/drug effects , Drug Administration Routes , Eating/drug effects , Fasting , Ligands , Male , Nerve Fibers/drug effects , Nerve Fibers/physiology , Oncogene Proteins v-fos/metabolism , Peptides, Cyclic/pharmacology , Rats , Rats, Wistar , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , alpha-MSH/pharmacology
15.
Neuropeptides ; 64: 117-122, 2017 Aug.
Article En | MEDLINE | ID: mdl-27625299

Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15µg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed.


Eating/drug effects , Energy Metabolism/drug effects , Galanin-Like Peptide/pharmacology , Homeostasis/drug effects , Animals , Body Temperature/drug effects , Body Temperature Regulation/physiology , Body Weight/drug effects , Body Weight/physiology , Energy Metabolism/physiology , Galanin/metabolism , Galanin-Like Peptide/administration & dosage , Injections, Intraventricular/methods , Male , Neuropeptides/metabolism , Rats, Wistar
16.
PLoS One ; 11(11): e0166842, 2016.
Article En | MEDLINE | ID: mdl-27870910

BACKGROUND: Obesity is one of the major public health challenges worldwide. It involves numerous endocrine disorders as etiological factors or as complications. Previous studies strongly suggested the involvement of the hypothalamic-pituitary-adrenal (HPA) axis activity in obesity, however, to date, no consistent trend in obesity-associated alterations of the HPA axis has been identified. Aging has been demonstrated to aggravate obesity and to induce abnormalities of the HPA axis. Thus, the question arises whether obesity is correlated with peripheral indicators of HPA function in adult populations. OBJECTIVES: We aimed to meta-analyze literature data on peripheral cortisol levels as indicators of HPA activity in obesity during aging, in order to identify possible explanations for previous contradictory findings and to suggest new approaches for future clinical studies. DATA SOURCES: 3,596 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 26 articles were suitable for analyses. STUDY ELIGIBILITY CRITERIA: Empirical research papers were eligible provided that they reported data of healthy adult individuals, included body mass index (BMI) and measured at least one relevant peripheral cortisol parameter (i.e., either morning blood cortisol or 24-h urinary free cortisol). STATISTICAL METHODS: We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. Meta-regression was applied to explore the effect of BMI and age on morning blood and urinary free cortisol levels. To assess publication bias Egger's test was used. RESULTS: Obesity did not show any correlation with the studied peripheral cortisol values. On the other hand, peripheral cortisol levels declined with aging within the obese, but not in the non-obese groups. CONCLUSIONS: Our analysis demonstrated that obesity or healthy aging does not lead to enhanced HPA axis activity, peripheral cortisol levels rather decline with aging.


Aging/physiology , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Obesity/physiopathology , Pituitary-Adrenal System/physiopathology , Adult , Body Mass Index , Clinical Studies as Topic , Female , Humans , Hydrocortisone/blood , Hydrocortisone/urine , Hypothalamo-Hypophyseal System/metabolism , Male , Middle Aged , Pituitary-Adrenal System/metabolism , Regression Analysis , Young Adult
17.
Peptides ; 85: 63-72, 2016 11.
Article En | MEDLINE | ID: mdl-27637621

Previously demonstrated age-related changes in the catabolic melanocortin system that may contribute to middle-aged obesity and aging anorexia, raise the question of the potential involvement of corticotropin-releasing factor (CRF) in these phenomena, as this catabolic hypothalamic mediator acts downstream to melanocortins. Catabolic effects of CRF were shown to be mediated by both CRF1 (hypermetabolism) and CRF2 (anorexia) receptors. To test the potential role of CRF in age-related obesity and aging anorexia, we investigated acute central effects of the peptide on energy balance in male and female rats during the course of aging. Effects of an intracerebroventricular CRF injection on food intake (FI), oxygen-consumption (VO2), core- and tail skin temperatures (Tc and Ts) were studied in male and female Wistar rats of five different age-groups (from 3- to 24-month). Anorexigenic responsiveness was tested during 180-min re-feeding (FeedScale) following 24-h fasting. Thermoregulatory analysis was performed by indirect calorimetry (Oxymax) complemented by thermocouples recording Tc and Ts (indicating heat loss). CRF suppressed FI in 3-month male and female animals. In males, CRF-induced anorexia declined with aging, whereas in females it was maintained in all groups. The peptide increased VO2 and Tc in all male age-groups, while the weaker hypermetabolic response characterizing 3-month females declined rapidly with aging. Thus, age-related alterations in acute central anorexigenic and hypermetabolic effects of CRF show different non-parallel patterns in males and females. Our findings underline the importance of gender differences. They also call the attention to the differential age-related changes in the CRF1 and CRF2 receptor systems.


Corticotropin-Releasing Hormone/administration & dosage , Peptides/administration & dosage , Receptors, Corticotropin-Releasing Hormone/metabolism , Age Factors , Aging/drug effects , Aging/metabolism , Animals , Anorexia/drug therapy , Anorexia/metabolism , Corticotropin-Releasing Hormone/metabolism , Eating/drug effects , Energy Metabolism/drug effects , Female , Male , Obesity/drug therapy , Obesity/metabolism , Oxygen Consumption/drug effects , Peptides/metabolism , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/genetics , Sex Characteristics
18.
J Mol Neurosci ; 59(4): 521-30, 2016 Aug.
Article En | MEDLINE | ID: mdl-27339773

Spontaneously hypertensive rats (SHR) have high sympathetic tone and progressive hypertension. Chronic calorie-restriction prevents hypertension. Their food intake (FI) and body weight are lower than in normotensive (NT) controls, even on a high-fat diet, suggesting a dysregulation of energy homeostasis. We assumed enhanced activity of hypothalamic anorexigenic melanocortins and diminished tone of orexigenic neuropeptide Y (NPY) in the background. FI of male SHR and NT Wistar rats was recorded in a FeedScale system upon intracerebroventricular injection of NPY, melanocortin ligands alpha-melanocyte-stimulating hormone (alpha-MSH), and agouti-related peptide (AgRP) or during a 7-day intracerebroventricular infusion of melanocortin antagonist HS024. Alpha-MSH, NPY, and AgRP immunoreactivities were semi-quantified in the arcuate (ARC) and paraventricular (PVN) nuclei of the hypothalamus in NT vs. SHR. Proopiomelanocortin gene expression was also assessed by quantitative RT-PCR in the ARC. Melanocortin-induced anorexia was stronger, FI induced by NPY or HS024 was smaller and delayed in SHR. Cellular alpha-MSH-specific signal density was higher in the ARC of SHR as evaluated by immunofluerescence, which was supported by PCR data. In the PVN, no differences in alpha-MSH-, NPY-, or AgRP-immunosignal were observed. Our results suggest that a higher melanocortin production/responsiveness and lower NPY responsiveness may contribute to the body weight dysregulation of SHR.


Energy Metabolism , Homeostasis , Hypertension/metabolism , Agouti-Related Protein/pharmacology , Animals , Body Weight , Hormones/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Neuropeptide Y/pharmacology , Peptide Fragments/pharmacology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , alpha-MSH/pharmacology
19.
Peptides ; 56: 59-67, 2014 Jun.
Article En | MEDLINE | ID: mdl-24680735

Leptin, a catabolic adiposity signal acts in the hypothalamus via suppressing food intake and inducing hypermetabolism. Age and obesity are accompanied by leptin resistance. The present study aimed to clarify which components of the catabolic leptin effects are influenced most strongly by aging and which ones by nutritional state-induced alterations in body composition. In our biotelemetric study the effects of a 7-day intracerebroventricular leptin infusion on various parameters of energy balance (food intake, body weight, oxygen consumption, heart rate and body temperature) were analyzed in male Wistar rats of different age-groups (from 3 to 24 months) and nutritional states (normally fed, diet-induced obese and calorie-restricted). Leptin resistance of older animals affected hypermetabolic actions, whereas leptin induced anorexia in all age-groups. Weight reducing effect of leptin diminished in middle-aged and aging animals to become significant again in the oldest group. In diet-induced obese rats leptin-induced hypermetabolism of the young rats and hypermetabolism plus anorexia of the aging ones were suppressed. Calorie-restriction reduced body weight and fat mass to a similar extent in all age-groups. It strongly enhanced leptin-induced hypermetabolism at all ages and prevented the manifestation of anorexigenic actions of leptin with the exception of the oldest group. This latter finding suggests an unexpected increase of responsiveness to anorexigenic leptin actions in old rats. Accordingly, anorexia and hypermetabolism change in disparate ways with aging. Nutritional state predominantly influences hypermetabolic leptin actions. Resistance to both hypermetabolic and anorexigenic actions were promoted by obesity, while calorie-restriction enhanced responsiveness to leptin, especially in old rats.


Leptin/pharmacology , Aging/physiology , Animals , Body Composition/drug effects , Body Weight/drug effects , Caloric Restriction , Energy Metabolism/drug effects , Male , Obesity/metabolism , Rats , Rats, Wistar
...